m-Isometric Commuting Tuples of Operators on a Hilbert Space
نویسندگان
چکیده
We consider a generalization of isometric Hilbert space operators to the multivariable setting. We study some of the basic properties of these tuples of commuting operators and we explore several examples. In particular, we show that the d-shift, which is important in the dilation theory of d-contractions (or row contractions), is a d-isometry. As an application of our techniques we prove a theorem about cyclic vectors in certain spaces of analytic functions that are properly contained in the Hardy space of the unit ball of C.
منابع مشابه
Supercyclic tuples of the adjoint weighted composition operators on Hilbert spaces
We give some sufficient conditions under which the tuple of the adjoint of weighted composition operators $(C_{omega_1,varphi_1}^* , C_{omega_2,varphi_2}^*)$ on the Hilbert space $mathcal{H}$ of analytic functions is supercyclic.
متن کاملCommutant lifting theorem for n-tuples of contractions
We show that the commutant lifting theorem for n-tuples of commuting contractions with regular dilations fails to be true. A positive answer is given for operators which ”double intertwine” given n-tuples of contractions. The commutant lifting theorem is one of the most important results of the Sz. Nagy—Foias dilation theory. It is usually stated in the following way: Theorem. Let T and T ′ be ...
متن کاملContractive Hilbert Modules and Their Dilations over the Polydisk Algebra
In this note, we show that quasi-free Hilbert modules R defined over the polydisk algebra satisfying a certain positivity condition, defined via the hereditary functional calculus, admit a unique minimal dilation (actually a co-extension) to the Hardy module over the polydisk. An explicit realization of the dilation space is given along with the isometric embedding of the module R in it. Some c...
متن کاملContractive Hilbert Modules and Their Dilations over Natural Function Algebras
In this note, we show that quasi-free Hilbert modules R defined over natural function algebras satisfying a certain positivity condition, defined via the hereditary functional calculus, admit a dilation (actually a co-extension) to the Hardy module over the polydisk. An explicit realization of the dilation space is given along with the isometric embedding of the module R in it. Some consequence...
متن کاملThe Sums and Products of Commuting AC-Operators
Abstract: In this paper, we exhibit new conditions for the sum of two commuting AC-operators to be again an AC-operator. In particular, this is satisfied on Hilbert space when one of them is a scalar-type spectral operator.
متن کامل